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It is shown that upon substitution of polymethines R - - ( C H ) N - - R  with com- 
plex many-atom substitution R-- ,  in the energy gap of polymethine chains 
( N ~  oo) may arise states which are responsible for longest-wavelength transi- 
tion. For certain substituents the energy of the electron transitions may be 
considerably lower than 1 eV, i.e. the transitions may be in the near infra-red. 

Key words: Substituted polymethines - -  Energy spectrum of - - -  Complex 
substituents 

1. Introduction 

Substituted polymethines are one of the main classes of organic dyes. This justifies 
the interest towards the theoretical study of their energy spectrum. The latter is 
determined by two factors: by the length of the polymethine chain and by the 
type of the substituents R1-- and R2--: 

R I - - ( C H ) N - - R  2 . 

In the previous communications [1, 2] it was shown that the width of the energy 
gap is equal for polyenes [ N =  2n] and polymethines [ N = 2 n  + 1] for [N-~ co] 

* Second communication: Theoret. Chim. Acta. (Bed.) (1981) 60:185 
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and is =2 eV. Upon substitution in a polymethine chain, "impurity" states may 
arise in its energy gap, their energy depending on the type of the substituents 
R1-- and R2--. These impurity states are responsible for the energy of the 
longest-wavelength ~'Tr* transitions. 

In the preceding investigations [1, 2] the substituents R are atoms or atomic 
groups, - -O- ,  --NH2, --BH2, which participate with a single atomic orbital in 
the system of conjugation. For such substituents the boundary conditions are 
simple and the problem of determining the energy spectrum of the substituted 
polymethines has an analytical solution [1, 2]. Of practical interest, however, are 
those to, to'-substituted polymethines, in which the substituents are complex, 
many-atom 7r-electron systems [3]. For just such systems the energy of the longest 
wavelength transitions may be considerably lower than the corresponding energy 
for polymethines with simple substituents. In the works of Sens [4] and Drexhage 
[5], as well as in the work of Ishchenko [6], the synthesis of to, to'-substituted 
polymethines is reported, for which the energy of the longest-wavelength transi- 
tions is much lower than the energy of the corresponding merocyanines - oxonoles 
and cyanines with the same number of C-atoms in the polymethine chain. 

Some recent studies [4, 5] give rise to the general question about the lower 
boundary of the electron transition energy for an infinite polymethine with 
complex substituents, i.e. whether the energy of the longest-wavelength transition 
Aeo~ [N~oo]  converges towards a non-zero value or AeonS0. When the sub- 
stituents are atoms [N, O], as with the cyanines, oxonoles and merocyanines, the 
lower boundary for the excitation energies Aeoo= 1 eV [2]. For complex sub- 
stituents, however, it is possible that the energy of the electron transition is less 
than 1.0 eV. In the paper of Sch~ifer and Lfittke [7], the lower boundary for the 
electron transition energy is set at 0.73 eV (Amax = 1700 rim). To find a more 
general answer to this problem which is important for synthetists who seek 
substances absorbing in the infrared is the main objective of the present investi- 
gation. 

Another aim of this study is to find criteria which allow an estimation to be made 
for the transition energies of polymethines with many-atom substituents. 

2. Model for substituted polymethines 

The energy gap AEo~ of any one-dimensional system with a given topology is 
determined by two factors: geometry and electron correlation [8, 9] 

- -  2 2 AE -4a . . . .  - } - m g  . . . .  ( 1 )  

In the case of polymethines, the geometry component Ageo m = 2]fie --/3s] [10]. /3s 
and /3a are the resonance integrals of the single and double bonds in the 
polymethine chain, respectively. 

As in [2], the study of the energy spectrum can be made in the general case, 
when A g e o  m yk A . . . .  • 0. For simplicity, we shall assume that the energy gap is 
determined solely by the geometry factor, i.e. 

AEoo = Ageorn = 2 l f l  d - -  f l s [  = 2/3a[1 - t[. (2) 
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(In (2) and in the expressions that follow we shall consider the resonance integrals 
positive: /3 > 0.) 

The choice of  model with alternation in the bond lengths does not restrict the 
generality of the treatment. As in (2), for an appropriate parametrization, the 
same results could be obtained in the general case, too, i.e. when A .... ~ 0. The 
considered model with alternation also has the advantage of being more visual 
and allowing the application of substantially simpler formalism. 

If we-assume the experimental value 2~E~o= 2.25 eV [11] and t = 0.719 [2], we 
obtain from relation (2)/3a = 4.0036 eV,/3s = 2.8786 eV. If the relationship between 
the resonance integrals and the distance is calculated according to formula [10] 
/3(R) = fl(Ro) exp a ( R  - Ro) [a  = 3.2195], then /3(Ro) =/30 = 3.39 eV. It follows 
from these values of the parameters that the energies in the energy gap of an 
infinite polymethine chain are within the interval: 

-0.3319/3o= -I/3d -flsl  <- E -< I/3d -/3s] = 0.3319/3o. 

Since only the odd polymethines (N = 2n + 1) are of practical interest [3], those 
will be treated below. However, the transition energy can be easily evaluated for 
the substituted polyenes (N = 2n) as well. The latter have the same gap but no 
NBMO. 

Two structures: a symmetric (S) - C2~, and a non-symmetric (A) one are possible 
for the non-substituted polymethines, as well as for polymethines symmetrically 
substituted with two end groups R ( N  = 2n + 1): 

2 n+l 2' 
1 "~ ' - -~" -  - - .A. - . .  ~ 1 ' S 

3 n n' 3" 

2 2n 

1 " ~ ' ' ~ ' . . . . ' ~ "  2n+1 A 
3 

For large values of  n the energy spectra o f  non-substi tuted polymethines for both 
forms: (S) and (A), are identical [12]; however, they differ relative to the electron 
density distribution in the non-bonding MO [NBMO]. 

Since model (S) is more adequate than model (A) for describing both non- 
substituted and to, w'-disubstituted polymethines, all further considerations are 
carried out in terms of model (S). 

All the polymethines discussed in the paper are cationic systems. The charge 
distribution (with conservation of  the symmetry C2~) between the polymethine 
chain and the substituents can be represented as follows: 

| 

. . . .  "-R | (s-,) 
2n+1 

| 

R = �9 . . . .  (CH)  . . . . .  = R ( S - 2 )  
2n+I 

In the first case, (S-l) ,  the two substituents have a positive charge each, while 
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the polymethine chain bears the negative charge (anionic odd alternant hydrocar- 
bon). The NBMO of the polymethine chain is doubly occupied. Polymethines 4 
studied in a previous work [6] belong to this type (see Sect. 4). 

In the second case, (S-2), neutral substituents are attached to a polymethine 
chain of positive charge; so, the NBMO is vacant. Here belongs the class of 
pyrilocyanines [4, 5], e.g. the cyanine: 

The two fragmentation models are nearly equivalent. 

3. Method and derivation of the main relations 

Let us denote with {~k} the MO's of the polymethine chain, with {~i} and {~j} 
the MO's of the substituents R~ and R2 of the ~o,os polymethine, and 
with {Ek}, {Ei}, {Ej} their corresponding energies. In the LCMO approximation, 
the MO's of the substituted polymethine may be represented as follows: 

% =E  C , k % + Z  Cp,%+E C,j% (3) 
k i j 

and the energy matrix will take the form: 

R ,  I O '  , 
. . . . .  +----~ W 

O = O ,' R2 I (4) 

w ]P 
The matrices R1, R2 and P are diagonal and their matrix elements are equal to: 

r,= E , -  E, rjj = E j -  E, pkk= Ek-- E. 

The elements of the submatrix W represent the interaction between the AO's of 
the substituents and the MO's of the polymethine. 

The expansion of the determinant, det Q, leads to wieldy and simple expressions 
when the substituents R~ and R2 are atoms - a case which was treated in a 
previous communication [2]. In the general case, the expansion of det Q leads 
to a complex unwieldy polynom, from the study of which no conclusion can be 
made in the general case about the energy spectrum of the substituted polymethine. 

For many-atom substituents the following two general conclusions about the 
energy spectrum of the substituted polymethine can be made: 

(i) For n-~ oo the energy spectrum of the polymethine chain is not changed by 
the substituents. This follows directly from the perturbation theory. The matrix 
elements contributing to the second order correction to the energy are equal to: 

h,k : ('u = CirCkl(N)~O 
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Cir is the coefficient of the AO of the rth atom of the ith MO of the substituent, 
whereas Ck~N) is the coefficient of the l(N)th AO of the kth MO of the polymethine 
chain. When n ~co, Ck~N~O a~d the correction to the energy of  the kth MO of 
the polymethine chain is equal to: 

AE(k 2)=m h'2k " -~*  0 
~ E k  -- Ei 

(m is a finite integer). 

However, in the general case the correction to the MO energies of the substituent 
is non-zero (see Eq. (10)). 

(ii) In the cases when the substituents have elements of symmetry, some general 
and exact (within the used approximation) conclusions can be made. If the 
substituents R belong to the symmetry group C2~, the MO's can be classified 
into symmetric ~ s  and antisymmetric qfa, relative to the plane perpendicular to 
the molecular plane. If the atom r of the substituent R, which is connected with 
the polymethine chain, lies in the plane ~, the coefficients cA of the atomic 
orbital ~r of the antisymmetric MO's are equal to zero. This means that E~, the 
energies of the substituents R which correspond to the antisymmetric MO's, do 
not change on connection to the polymethine chain. Their position relative to 
the energy spectrum of the non-substituted polymethine chain can be directly 
determined. 

If one of the substituents: R1 or R2 or both, have an MO of energy E i'~j) satisfying 
the condition 

tE~jll < lf3d -fl~l = 0.3319flo (5) 

the antisymmetric MO falls within the energy gap. 

For finite polymethines Eq. (5) takes the form: 

IEGI < levi (6) 

where E, is the frontier MO (but not the non-bonding, NBMO, for the odd 
polymethines) of the polymethine chain. 

For example, the MO energies of substituent 2 

NH 2 

(in /30 units) are 

E s =-2.504;  -1.762; -1.000; -0.526; 0.922; 1.870 

E2-- -1.775; -1.000; 0.186; 1.360; 2.228. 

The energy of the LUMO (E7 = 0.186fio) satisfies condition (5) and lies in the 
energy gap. 
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If only states a-Ira a r e  located in the energy gap, those will be responsible for the 
longest-wavelength transitions in the substituted polymethine. 

For polymethines (N = 2n + 1) disubstituted with substituent 2, the energy of the 
longest-wavelength ~-~-* transition is determined by the vacant antisymmetric 
MO of the substituents. The energy of the transition will be equal to: 

Ae = 0.186flo. (7) 

The transition energy is lower than the energy of the longest-wavelength transition 
in 2, which is equal to: O.186flo+O.526flo=O.712flo. For the selected value of 
/3o = 3.39 eV, Ae = 0, 712.3, 39 = 2.41 eV, whereas Aeexp = 2.71 eV [13]. For this 
parametrization the transition energy for the substituted infinite polymethine will 
be equal to Aeo~ = 0, 186.3, 39 = 0.63 eV. 

Using solid state theory terminology, the levels satisfying conditions (5), i.e. those 
lying within the energy gap, are impurity-local levels. The transitions from these 
levels to other levels from the same fragment with antisymmetric MO's, are strictly 
localized within the fragments R. 

Within the framework of the tight-binding approximation in Hiickel ~r-electron 
A approximation, the position of the local levels with energy Ei(j) in the energy 

gap is exact. It is possible, however, that the energy of the symmetric M O - ~ j )  
also satisfies condition (5). Such is the case, for example, of the substituent 
derived from Michler's Hydrol blue 3: 

R2N ~ ' ~  NR7 3 

where the LUMO is symmetric and its energy amounts a + 0, 1635/3o (aN = a --/30; 

/3c~=/3o). 

In this case the symmetric MO's of the substituents interact with the MO's of 
the polymethine. As a result, their energies are changed (see Eq. (10)). An 
analogous case occurs when the substituent does not have the specified sym- 
metry elements, e.g. it belongs to the symmetry group Clh, like for example 
substituent 1. 

For complex substituents, such as 1_, 2 and 3, the exact calculation of the impurity 
level energies in the spectrum of an infinite polymethine I N -  oo] is not available 
in the general case. For finite values of N, the eigenvalues of the matrix defined 
by Eq. (4) can be obtained by a direct numeric diagonalization. 

The eigenvalues of the matrix Q, for N -  oo, can be found simply, but approxi- 
mately, in the following way: if we assume that every MO of the substituent 
interacts with the MO's of the polymethine chain, independently of the interaction 
of the other MO's of the same or another substituent, Eq. (3) transforms into 
equations of  the form: 

Op = C~i~,+Y C~%. (8) 
k 
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To each MO of the fragments (except for the antisymmetric ~ a ,  if these exist) 
an equation of type (8) is juxtaposed, respectively, an energy matrix of  the form: 

Ei - E dl d2 d3 " " " d N  [ 

dl E 1 - E  0 0 �9 �9 �9 0 

d 2 0 E 2 - E  0 �9 �9 �9 0 (9) 

L 0 0 ' ' '  E N - E  0 

where 

& = < % 1 H 1 % >  = G r c < j  = C,rG,.,nr 

Cir is the coefficient of  the AO of the rth atom of the ith MO in the fragment, 
which is connected to the 1st or the Nth atom of the polymethine chain, and 
fi = r//3o is the resonance integral between these two AO's. The expansion of  the 
characteristic determinant of  the matrix (9) leads to the equation: 

N a~ 
E - E , + Y . - - - O  (10) 

k E - E k  

its solution described in [2], 

Thus, the pgoblem of determining the change in the  energy of the ith orbital of  
the fragment R is reduced to the problem of a monosubsti tuted polymethine 
with an effective atom - X  of Coulomb integral 

~x = ~ + h/3o = G.  

For symmetric w,w '-  distlbstituted polymethines of  type R - -  (CH) N-- R, following 
the method described in [2] for determining the energies of  the impurity levels, 
we obtain the equations: 

E{hjgo+E_r12~2C2r2EF(E)}- 2 r~ 2 f~2 .."~2 v r l  p0t~,rt~O = 0 (11) 

h[3o q- E - "rIR ~2  c Z r 2 E F (  E ) = 0. ( l l a )  
33" 

In the above equations Co is the AO coefficient of  the atom bonded to the 
substituent in the NBMO. For polyenes the NBMO is absent, and for symmetric 
odd polymethines C 2~  t" = (/3~//3d)" [2]. The function F(E) is equal to [N ~ oo]: 

sin w 
~ , / 2  sin 2arctg e(~o) 

~ C O  s t0 
F(E) = E 2 1 2 2 2 a0 -(aAEoo+4floCOS w) doJ 

where 

e(w) =~/(1 - t )2+4t  cos 2 oJ. 

When n ~ oo, Co~ 0, and Eq. (11) has a root E = 0. In addition to this root which 
corresponds to the unperturbed NBMO, Eqs. (11 ) - ( l l a )  have two equal roots, 
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their value depending on h, which correspond to two degenerate impurity states, 
belonging to different irreducible representations: B1 or A2, respectively. 

In the case n ~ c% the NBMO of a substituted symmetrical polymethine chain is 
not changed (see Sect. 3(i)). Then the matrix elements of the transition from the 
impurity level qbp to the NBMO of a polymethine chain with 4m + 3 AO's will 
look like (see the expressions for the MO's in Appendix I and II): 

(~o(BO[Xl~p)=C(~o(Bx)lXly ~ dzk+l ~2k+l(A2)) 
k EEk+l -- Ep 

/ s2-1 
= v~ CEpflC,r(R2+ Rd) ~s-5-~--__-1 

X ~ ~ (--s)t[2(m--l)+l] Czk+''1C2k+1,2'+' ( 12 )  
1=o k=o E ~ -  E~ 

with 

s = ( /3~/#~)  ~ 1. 

In the above expression R~ and Rd stand for the bond length in the polymethine 
chain. 

The analysis of Eq. (12) shows that the asymptotic case (m-> oo) leads to a finite 
value of the transition matrix element, depending strongly, however, on: /~, Ep 
and cir. 

4. Comparison with experiment 

The absorption spectra of the polymethines of the type ( S -  1) with substituent _4 

I I 
CH a CH3 

X=C(CH3) 2 

have been studied by Ishchenko et al. for n = 1, 2, 3, 4, 5 [6]. Using the method 
of Pad6 [15] for the asymptotic value [n ~ ~]  of the energy of the longest- 
wavelength ~-Tr*-transition, one obtains the values 0.82 eV (solvent CH2C12) and 
0.66 eV (solvent C2H5OH). 

Among the MO's of fragment 4 (with aN. = a -/30,/3cn =/30) 

~ / )  C r = 0.778 

I 
CH3 

only the LUMO is of interest (Es= ce+0.5017/3o). It is the only MO bringing 
about roots via Eq. (11) that lie within the energy gap. These roots are (with 
r~ = 1, flo = 3.39 eV): 

E 1 = ce; E 2 = E 3 = te + 0 . 7 0  eV.  
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Table 1. Dependence of the experimental (Aexp) - [6] and the extrapolated 
(N->oo) values of the wavelength (in nm) of the longest wave ~r~r* 
singlet-singlet transitions on the length of the polymethine chain (n) for 
polymethines of the type 

I I 
CH:} fiH 3 

X = C (CH3) 2 

The asymptotic value~ of h (n ~ A) are obtained within the Pade [15] 
approximation 

n Aexp a hexp  b Aexp c 

1 550 545 312 
2 652 640 416 
3 758 742 519 
4 865 850 626 
5 980 958 734 

1501 1877 1170 
(0, 82 eV) (0, 66 eV) (1, 06 eV) 

a Solvent CI-t2C12 
b Solvent C2HsOH; in the case of DMSO solvent the obtained A~ values 

are practically the same 
Experimental values [16] for the polymethincyanines (CH3)z~,~=CH-- 
(CH:CH).--N(CH3) 2 

The N B M O  is doub ly  o c c u p i e d  and  the vacan t  impur i ty  levels co r r e spond ing  to 
the  roots  / ~ 2  and  E3 lie above  the N B M O .  Thus,  the a sympto t i c  va lue  of  the 
energy o f  the  longes t -wave leng th  t rans i t ion  will  be equal  to Ae~o = 0.70 eV [n --> ~ ] ,  
whereas  the expe r imen ta l  values  are 0.66-0.82 eV (Table  1). 

To the r ema in ing  M O ' s  there  co r r e spond  roots  Eo accord ing  to Eq. (11), which 
lie on the b o u n d a r y  o f  the  energy gap:  E ~ a + I/3s-/3a I- 

5. Discuss ion 

It  fo l lows f rom the above ,  that  for complex  subst i tuents  the  impur i ty  levels E, 
m a y  be l oca t ed  in the whole  range of  the energy gap  o f  the po lyme th ine  chain:  

a - I r a  - f l s l  < Ep < a + ]rid --fl~]. 

This means  tha t  the energies  of  the ~-~-*-transitions f rom or to the impur i ty  levels 
lie wi th in  the  range de t e rmined  by  the wid th  o f  the energy gap:  

for  odd  p o l y m e t h i n e  chains ,  and  

O < A a ~ < � 8 9  

for even p o l y m e t h i n e  chains.  
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The above inequalities, in which AEo~=2.25 eV [11] is the width of the energy 
gap of the infinite polymethine, hold for intra gap electron transitions, i.e. 
transitions between levels within the energy gap or between them and the boundary 
levels of the conductivity band or the valence band. 

Condition (13) may also be valid for the energies of some local transitions, which 
occur within the fragments themselves. 

Inequality (13) should be interpreted in the following way: upon an increase of 
N, the asymptotic value of the longest-wavelength electron transition energy lies 
within the range [0-2.25 eV] (or 0-1.25 eV). For specific substituents it may be 
less than 0.5 eV. 

This result, as well as all the conclusions and considerations in this paper, are 
valid in the approximation of Born-Oppenheimer. All estimates in this work 
concern energies of direct-vertical electron transitions, for which the absorption 
of the photon is not connected with absorption or release of a phonon. 

Denoting the energy of the phonon in the infinite polymethine by h~oq, the energies 
of the indirect transitions (i.e. of those transitions, where along with the absorption 
of a photon, a phonon is absorbed or released) will be equal to [14]: 

hw = A e • htoq. 

For direct electron transitions, the energy of which is low (i.e. Ae < 0.5 eV) the 
transition energy becomes comparable with that of the phonons. In this case one 
can speak of electron transitions only conditionally. 

Appendix I 

The MO's  o f  a polymethine with 4 m + 3  AOs 

C H 2 : C H - - C H  . . . .  = C H - - C H - - C H - - C H - - C H : - . . C H - - C H : C H 2  
1 2 3 ~ ~ "~ 3' 2' 1' 

+ + + 
bO 

could be written as 

2 m + l  

~bEk+l(A2) = Y 
I=O 

2m 

C 2 k + 1 , 1 ( 2  ) - -  1/2(~o t + CJ) + C2k+l,2m+2r 

~P2k(B1) = )2 C2kj(2)-- 1/2(~l -- ~ ) .  
1=1 

If the orbital coefficients o f  the polymethine chain are: 

C2k+~,, ~ = A k sin (Wk/~ + ~) 

taking into account the boundary  conditions. (For the sake of  simplicity we consider only MOs 
belonging to the irreducible representation A2; by the same manner  we can obtain the expressions 
for the MOs belonging to the representation B1) 

=l= c2k+1.1 e ( w  k)  + [~dC2k+l,2 = 0 

=i:-C2k+l,2m+2e(tOk) +~ /2  flC2k+l,2m+ 1 = 0 



Energy spect rum of  w,to '-substi tuted polymethine chains 257 

with 

e (tok) = 4(/3 d -/3~) 2 + 4/3~/3a cos 2 to k =/3ax/(1 - t) 2 + 4t cos 2 to k 

0_< ~%_< ~r/2 

is obtained (/3 < 0 ;  /3a < 0 ) :  

:r a sin w k 
to k + ~ = arctg - p(wk) 

e(o.~k)+/3a cos o2 k 

• sin to k 
(2m +2)tok + ~0 = arctg _ _  q(tok) 

e(wk) • cos w k 

(sign uppe r  refers to the bond ing  MOs and the down  sign to the ant ibonding ones).  

For  the orbital coefficient we have 

C2k+I,EZ+ t = sin [(2l + 1)~o k + q~] 

~ 2 m ~  f 21+l (oJ --p(o~k)]+p(oJk)}. = s i n / ~ - ~ [ q  k) 

F rom the condit ion:  /3sc21+~ + ~ac2t_~ = 0 and from the normal isa t ion condit ion respectively, for the 
N B M O  we obta in  

1 m 
02~+2(B1) = 4to(B1) = - ~  Z b2l+1(~021+1 - ~ 2 / + 1 )  

42  I=o 

with 

[ $2--1 l 
b2/+l = ~ / S 2 " ~ _  1 (--S) 

s = /3d/ /3, # l. 

A p p e n d i x  II 

I f  we denote by  Ep the energy of  the impuri ty leve in the gap (solution of  the Eq. (10)), it follows 
f rom (9) that  coefficients Cpk in representat ion (8) will be 

dk 
%k = C = -c , i  Ek- E, 

From the normalizat ion condit ion we obtain (see Eq. (8)): 

. 2 2 2 c~(NBMO)c23Z~-l /z  7 + Y d k ( E k + E p )  ' 
c =  ~_. .  7 ~ - ~  ~ E~ J k ( E k - E p )  

'~'~176 { l+c~r f la4  e2(t~ E2p] dto}-l/2 
[ E Z ( o ) -  E2p] 2 

= {1 + C~r/32S} - ' /2 

where: E2(w)  = 1 /4AE~+4/3~  cos 2 w, and (see Appendix  I) 

2 /3 d sin o) 
c~(~o) = sin 2 arctg 

2 n + l  e ( w ) + / 3  d cos ~o" 

For  values of  E v in the range: 0 < - E v <- 1.0 eV, integral S above varies in the range: 0.220 = S = 2.494 
(t  = 0.719; 13o = 3.39 eV; AE~o = 2.25 eV). Hence, the express ion for the impuri ty level MO becomes:  

dk 
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